MASSACHUSETTS GENERAL HOSPITAL

CENTER FOR TRANSPLANTATION SCIENCES

Low-dose IL-2 therapy is recognized as an effective approach for *in vivo* expansion of Tregs.

Drawbacks:

- Short half-life¹
- Off-target effects²

More stable and selective IL-2 analogs are needed²⁻⁵

Novel IL-2 mutein (mIL-2): Engineered fusion protein:

- Selectively binds to high-affinity IL-2 receptors
- Conjunction with the human IgG1 Fc domain

Flow cytometry

Flow cytometry

	1 st donoi BALB/c	~	B	2 nd Donor BALB/c (Allo) C3H (3 rd) B6 (Auto)	
Heart Tx.					
CTLA-4 Ig (i.p.) 250 ug /body / mIL-2 injection: twice a week, las					injectio
Mutein IL-2 (SQ)					R
C57BL/6	Day 0 2	14 28	60	100	 . .
Result 3: Gra	aft infiltrat	ng Tregs		Result 2: B • CBC	lood p

Experiment summary

Fig 2. Experimental summary. BALB/c heart grafts were transplanted into the abdomen of C57BL/6 recipients. mIL-2 were administered subcutaneously on day 0, 2 and twice a week thereafter until day 60. 250 ug of CTLA-4 lg was intraperitoneally injected on day 2. In mIL-2 group with accepted 1st grafts, 2nd heart grafts were transplanted into the right cervical area on day 100. Graft survival was evaluated by palpation.

Background

A Novel IL-2 Mutein Induces Regulatory T Cell-Rich Microenvironment and Leads to **Alloantigen-Specific Graft Acceptance**

Yoshikazu Ganchiku¹, Thiago de Jesus Borges¹, Rodrigo Benedetti Gassen¹, Orhan Efe¹, Zach Shriver², Greg J. Babcock², Leonardo V. Riella¹ ¹Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, ²Visterra, Inc., Waltham, MA

Result 1: mIL-2 treatment induced graft acceptance last mIL-2 dose (day 60) B Α Day 28 **%** 100 Mutations to increase mIL-2 Ctrl IgG Treg specificity CTLA-4 Ig + Ctrl IgG (n=5) CTLA-4 lg + mlL-2 (n=16) 50 25 p < 0.0001 (Log-rank test) Human Fc portion: Time after Transpantation (davs) Mutations to increase bioavailability Day 100 mIL-2 75 -← C57BL/6 (n = 2) p=0.0010 | - BALB/c (n = 5) ← C3H (n = 6) 25 -The regions in which the mutations were Time after 2nd Transpantation (days)

Fig 3. mlL-2 treatment with CTLA-4 lg induced alloantigen-specific graft acceptance.

(A) Graft survival of the first BALB/c graft. By day 60, mIL-2 or control IgG was injected subcutaneously twice a week. After day 60, any intervention was done. (B) Graft histology at day 28 (control group and mIL-2 group) and day 100 (mIL-2 group). (C) Graft survival of the second graft without any immunosuppression. The survival of both 1st and 2nd allograft was observed by palpation.

Result 2: mIL-2 expanded peripheral blood Tregs

on: day 60

Result 1: Graft Survival Histology

phenotype

(A) Blood count of lymphocytes.(B) eosinophils.

Result 3: mlL-2 expanded graft-infiltrating Tregs

CD25

Fig 5. mlL-2 treatment attenuated graft infiltration and expanded graft-infiltrating **Tregs.** (A) Graft photos at the time of procurement. (B) Graft weight (left) and CD45⁺ cell count (right). (C) The proportion of graft infiltrating Tregs. Left: representative images, center: the proportion of Tregs, right: Tregs/nonTregs ratio.

- (2022).
- allograft acceptance in mice. Nat Commun. 14, 1383 (2023).
- mice. Sci Immunol. 5, eaba5264 (2020).

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Conclusions

• mIL-2 can be used without serious adverse events.

• mIL-2 induced antigen-specific allograft acceptance.

• mIL-2 expanded CD4⁺ Tregs in both peripheral blood and the graft.

References

M. T. Lotze et al. In vivo administration of purified human interleukin 2. I. Half-life and immunologic effects of the Jurkat cell line-derived interleukin 2. J. Immunol. **134**, 157–166 (1985).

2. R Hernandez et al. Engineering IL-2 for immunotherapy of autoimmunity and cancer . Nat Rev Immunol 22, 614-628

Y Yamada et al. Biased IL-2 signals induce Foxp3-rich pulmonary lymphoid structures and facilitate long-term lung

4. J. H. Xie et al. Mouse IL-2/CD25 fusion protein induces regulatory T cell expansion and immune suppression in preclinical models of systemic lupus erythematosus. J Immunol. 207, 34-43 (2021).

5. L Khoryati et al. An IL-2 mutein engineered to promote expansion of regulatory T cells arrests ongoing autoimmunity in

American Transplant Congress. June 3-7, 2023